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ABSTRACT

How can a central bank avoid losing control over inflation expectations in the face of a large
supply shock ? Under rational expectations, respecting the Taylor principle - increasing rates
more than one for one with inflation - prevents self-fulfilling inflation and defines an active
monetary policy. We reconsider the issue away from rational expectations, for a large class of
boundedly rational expectations featuring both limited foresight and long-term learning. We
show three results. (1) When restricting monetary policy to a Taylor rule, the Taylor principle
does not prevent self-fulfilling inflation but hyperinflation spirals, unless for unrealistically
high degrees of foresight. (2) Against hyperinflation spirals, active monetary policy can be
characterized without restricting policy to a Taylor rule, as a sufficient increase of a weighted
average of present and future expected policy rates. (3) The weights on future policy rates first
increase but then decrease with the horizon, implying that delaying hikes too much requires larger
hikes later, with a larger drop in output. Yet, being slow in hiking rates can be optimal
provided a large cost on output stabilization, as it spreads the output cost over time.
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NON-TECHNICAL SUMMARY

How can a central bank avoid losing control over inflation expectations in the face of a large
supply shock? The question has come back front and center following the Covid pandemic,
as the world economy experienced supply shocks and inflation levels of magnitude not seen
in 40 years. Standard monetary models provide a well-known response to this question:
Respecting the Taylor principle - ie. increasing interest rates more than one-for-one with
inflation - prevents inflation from becoming self-fulfilling and defines an active monetary
policy. The last worldwide episode of high inflation- the Great Inflation of the 1970s - has
been linked to central banks' failure to respect the Taylor principle.

In standard models, the need to respect the Taylor principle is derived under the assumption
of rational expectations. In this paper, we revisit the question of how to keep control over
inflation expectations when they are instead boundedly rational.

What motivates us to move away from rational expectations is that the Taylor principle is
actually only necessary to prevent self-fulfilling inflation in baseline New-Keynesian models.
But baseline New-Keynesian models find forward guidance (FG) to have unrealistically large
effects on inflation and output - the FG puzzle. Solutions to the FG puzzle mainly work by
adding discounting to baseline models. Yet, when adding enough discounting to solve the
FG puzzle, a unique equilibrium with no self-fulfilling inflation obtains even under an
interest-rate peg - a fully passive monetary policy. This would suggest that the need to adopt
a sufficiently active monetary policy - to increase rates sufficiently in response to an
inflationary shock - is an artifact of unrealistically forward-looking models.

We move away from rational expectations and rely on Woodford (2019)'s model of bounded
rationality which combines two forms of bounded rationality: finite planning horizons and
long-term learning. Finite planning horizons make expectations less forward-looking than
rational expectations, providing a solution to the FG puzzle. Long-term learning makes
expectations about the long run backward-looking. We show three results.

First, we show that except for unrealistically high degrees of foresight, active monetary policy
prevents hyperinflation spirals and not self-fulfilling inflation. Assuming the central bank sets
interest rates by following a Taylor rule, we show that the Taylor principle remains necessary
and sufficient for a unique bounded solution. However, this Taylor principle prevents self-
tulfilling inflation only for very high degrees of foresight for which the model runs into the
FG puzzle. Whenever foresight is low enough to avoid the FG puzzle, the Taylor principle
prevents instead the risk that the economy go on an hyperinflation path, as long-run inflation
expectations gradually de-anchor.

Second, we move beyond Taylor rules. We characterize all the exogenous interest rate paths
that ensure a determinate bounded equilibrium where inflation returns to its target in the
long run. The characterization states that a weighted average of present and future expected
policy rates must increase sufficiently. We use the characterization to define the relative
anchoring effect of a rate hike at a given horizon: how much it brings down inflation in the long
run, relative to a contemporaneous interest rate hike. We show that the relative anchoring
effect is the highest at intermediary horizons. Delaying hikes beyond the first few quarters
therefore requires to hike them more tomorrow.

Finally, we derive the optimal monetary policy response to a cost-push shock. The more
weight the central bank puts on output, the less the central bank should increase rates on
impact, avoiding a fall in output today. While not increasing rates today requires to increase
them more later, it does not follow that increasing rates slowly only sets the stage for a worse
recession tomorrow. Provided rates are then kept high, increasing rates slowly can be justified
by a large weight on output stabilization, in order to spread the output cost across time.
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Note: The diagram represents the 3 possible situations that can atise as a function of the degree of bounded-
rationality discounting and the strength of the response in the Taylor rule.

Ancrer des anticipations non rationnelles
RESUME

Comment une banque centrale peut-elle éviter de perdre le contréle des anticipations
d'inflation face a un fort choc d’offre? Sous hypothese d’anticipations rationnelles,
respecter le principe de Taylor — augmenter le taux d’intérét d’au moins autant que
I'inflation — empéche une inflation auto-réalisatrice et définit une politique monétaire
active. Nous réétudions cette question sous I'hypothése d’anticipations a horizon de
planification fini et d’apprentissage sur le long terme. Nous obtenons trois résultats. (1)
Lorsque la politique monétaire suit une régle de Taylor, le principe de Taylor empéche
non pas une inflation auto-réalisatrice mais une spirale hyper-inflationniste, sauf pour des
horizons de planification irréalistiquement longs. (2) Sans se restreindre a une regle de
Taylor, nous caractérisons plus généralement les trajectoires de taux empéchant les
spirales hyper-inflationnistes, comme une augmentation suffisante dune somme
pondérée des taux d'intérét présents et futurs. (3) Les poids des taux d’intérét
augmentent tout d'abord, puis diminuent avec l'horizon, ce qui signifie qu’une
réaction initiale trop lente nécessite des hausses plus importantes par la suite et par
conséquent une plus forte baisse de l'activité. Cependant, une hausse graduelle des taux
peut s’avérer optimale car elle permet de lisser le cout pour Iactivité.

Mots-clés : désancrage ; principe de Taylor ; horizon limité.

Les Documents de travail refletent les idées personnelles de leurs auteurs et n'expriment pas nécessairement la
position de la Banque de France. Ils sont disponibles sur publications.banque-france.fr
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Introduction

How can a central bank avoid losing control over inflation expectations in the face of a large supply shock?
The question has come back front and center following the Covid pandemic, as the world economy expe-
rienced supply shocks and inflation levels of magnitude not seen in 40 years. Standard monetary models
provide a well-known response to this question: Respecting the Taylor principle—i.e. increasing interest
rates more than one-for-one with inflation—prevents inflation from becoming self-fulfilling and defines an
active monetary policy (e.g. Woodford 2001). The last worldwide episode of high inflation—the Great In-
flation of the 1970s—has been linked to central banks’ failure to respect the Taylor principle (Clarida, Gali,
and Gertler 2000).

In standard models, the need to respect the Taylor principle is derived under the assumption of rational
expectations. In this paper, we revisit the question of how to keep control over inflation expectations when
expectations are instead boundedly rational.

What motivates us to move away from the particular case of rational expectations is a recent important
qualification to the need to respect the Taylor Principle. The Taylor principle is necessary to prevent self-
fulfilling inflation in baseline monetary models, but it no longer is in monetary models developed to solve the
shortcomings of the baseline models. Baseline New-Keynesian models find forward guidance (FG) to have
unrealistically large effects on inflation and output—the FG puzzle (Del Negro, Giannoni, and Patterson
2012, Carlstrom, Fuerst, and Paustian 2015). Several solutions to the FG puzzle have been proposed.
Some, such as cognitive discounting, consist in departures from rational expectations, while others, such as
household heterogeneity, do not.! But virtually all work by adding discounting to the baseline model. Yet,
when adding enough discounting to the baseline model to solve the FG puzzle, a unique equilibrium with
no self-fulfilling inflation obtains even under an interest-rate peg—a fully passive monetary policy. This
would suggest that the need to adopt a sufficiently active monetary policy—to increase rates sufficiently
in response to an inflationary shock—is an artifact of unrealistically forward-looking models. Yet, recent
evidence confirms that too passive a monetary policy makes the central bank prone to losing control over
inflation (for instance the recent unfortunate experience of Turkey—see Gurkaynak, Kisacikoglu, and Lee
2022).

We consider how to keep control over inflation expectations away from rational expectations by consider-
ing instead a large set of boundedly rational expectations. Specifically, we rely on Woodford (2019)’s model
of bounded rationality, a generalization of the baseline New-Keynesian model under rational expectations,
which obtains as a particular case (section 1). Woodford’s model combines two forms of bounded rationality:
finite planning horizons and long-term learning. Finite planning horizons make expectations less forward-
looking than rational expectations, providing a solution to the FG puzzle. As such, they capture a larger

class of models of bounded rationality introduced as solutions to the FG puzzle, such as cognitive discount-

1On household heterogeneity, see e.g. McKay, Nakamura, and Steinsson (2016), Bilbiie (2020, 2018), Werning (2015) and
Acharya and Dogra (2020). On bounded rationality, see e.g. Woodford (2019), Farhi and Werning (2019), Gabaix (2020),
Angeletos and Lian (2018), Dupraz, Le Bihan, and Matheron (forthcoming).



ing (Gabaix 2020) and k-level thinking (Farhi and Werning 2019). Long-term learning makes expectations
about the long run backward-looking, a feature introduced by Woodford to highlight the fragility of neo-
Fisherianism predictions. More broadly, long-term learning captures a departure from rational expectations
common to other models of learning, such as least squares learning (Evans and Honkapohja 2001). The
combined FPH-learning model generalizes both cognitive discounting models and learning models, allowing
expectations to be both backward and forward-looking. As Gust, Herbst, and Lopez-Salido (2023) show, it
does a very good job at capturing the dynamics of expectations in surveys. In particular it can replicate the
under and over-reaction of expectations to shocks that have been recently documented in surveys and used
to discriminate between models of expectation formation (Coibion and Gorodnichenko 2015, Kohlhas and
Walther 2021, Angeletos, Huo, and Sastry 2020).2

We show three results. First, we show that except for unrealistically high degrees of foresight, active
monetary policy does not prevents self-fulfilling inflation but hyperinflation spirals. To do so, we restrict
monetary policy to a Taylor rule and study under which conditions it delivers a unique bounded solution
(section 2). We show that, bar knife-edge calibrations that we argue are not economically relevant, the
Taylor principle remains necessary and sufficient for a unique bounded solution. But it prevents self-fulfilling
inflation only for very high degrees of foresight under which the model is subject to the FG puzzle. Whenever
foresight is low enough to avoid the FG puzzle, the risk that the Taylor principle prevents is instead the
absence of bounded solutions: that the economy necessarily goes on an unbounded, hyperinflation path. This
generalizes Woodford (2019)’s result of instability under an interest-rate peg. It also fills the gap between
results on the Taylor principle obtained under rational expectations (i.e. purely forward-looking expectations)
and results on the Taylor principle obtained in models with purely backward-looking expectations such as
least squares learning (Bullard and Mitra 2002, Preston 2005).

What an active monetary policy prevents when the model is not subject to the FG puzzle is therefore very
different from what it prevents under rational expectations. The cause of the hyperinflation spiral is a de-
anchoring of inflation expectations, as long-run inflation expectations gradually diverge away from target.?
It takes root in what Wicksell (1898) called the cumulative process. Under a passive monetary policy, a
burst of inflation increases households’ and firms’ long-run inflation expectations, which decreases real rates,
increases aggregate demand and further increases inflation even once the initial shock has dissipated, and
so on in a snowballing spiral. This alternative risk of passive monetary policy, arguably closer to the main

risk on central bankers’ minds, has an intellectual history that predates risks of equilibrium indeterminacy.*

2For a review of the survey evidence against full-information rational-expectations, see e.g. Born, Enders, and Muller (2023).

3We therefore say that a policy anchors expectations if it prevents such divergence of inflation expectations by sufficiently
increasing interest rates. Note that a situation of anchored expectations can alternatively be understood as a situation in which
long-run expectations react little or not al all to recent realized inflation, even if the central bank does not increase rates. See
e.g. Carvalho et al. (2023) and Gati (2023). Because the set-up we consider assumes constant-gain learning, such a situation
is excluded by assumption. The central bank can only keep inflation expectations close to target—anchor expectations—by
actively bringing them back to target through interest rate hikes.

4Such explosive dynamics are also the dominant outcome in laboratory experiments by Assenza et al. (2021) when the
Taylor principle is not respected. To completely get rid of such explosive paths in their experiments, the response of policy
rates to inflation need to be significantly above one-for-one. For a response only marginally above one-for-one, many participants
extrapolate past trends, leading to explosive dynamics.



Beyond Wicksell (1898), it underlies Friedman (1968)’s argument against pegging interest rates. It is also the
risk of concern in purely backward-looking models of expectation-formation, such as least squares learning
(Bullard and Mitra 2002, Evans and Honkapohja 2003b, Preston 2005).% Our first result shows that it is the
risk that active monetary policy prevents not just in purely backward-looking models, but as soon as agents’
degree of foresight is low enough to avoid the FG puzzle.

Second, we move beyond Taylor rules (section 3). As is well-known, when expectations are rational and
the risk of passive monetary policy consists of equilibrium indeterminacy, monetary policy must necessarily
be implemented through some Taylor-like feedback rule. Specifying monetary policy as an exogenous path
for the policy rate results in equilibrium indeterminacy just like when the Taylor principle is not satisfied.
We show that when the degree of foresight is low enough to rule out the FG puzzle and the risk of concern is
instead hyperinflation spirals, characterizing active monetary policy no longer requires to specify monetary
policy through a feedback rule. We define an active monetary policy as one that delivers a determinate
bounded equilibrium where inflation returns to its target in the long run and show that there exists a large
class of exogenous interest-rate paths that do so. This is summarized in Table 1. We characterize the class of
interest rate paths that deliver active monetary policy. The characterization states that a weighted average
of present and future expected policy rates must increase sufficiently. It captures the idea that inflationary
shocks must be met by interest rate hikes, either today or at some point in the future. As such, it captures
an intuition similar to the one behind the Taylor principle, but without restraining monetary policy to follow
a Taylor rule.

We show that this characterization allows to determine how much interest rate hikes at different horizons
matter for anchoring expectations. To this effect, we define what we call the relative anchoring effect of an
interest rate at a given horizon: how much it matters for bringing inflation down to target in the long run
relative to a contemporaneous interest rate hike. We show that the relative anchoring effect is the highest
at intermediary horizons, striking a balance between two opposite forces. First, rate hikes at very short
horizons matter little for bringing inflation down because short-term interest rates have by themselves little
effect on aggregate demand and therefore inflation. This first effect is present under rational expectations as
well but not in purely backward-looking models where aggregate demand does not depend on the entire yield
curve beyond present short-term rates. Second, rate hikes at very long horizons matter little for bringing
inflation down because, although they can always bring down inflation, it takes much larger future hikes
to re-anchor expectations once expectations have had time to drift away. This second effect exists only
when hyperinflation spirals are possible and is therefore absent under rational expectations. The horizon of
interest rate hikes that matters most for bringing inflation back to target is intermediary, long enough to

affect long-term rates for several quarters but not so long that it mostly cools the economy once expectations

5In the models of Bullard and Mitra (2002) and Preston (2005) which feature decreasing-gain learning, respecting the Taylor
principle actually also guarantees convergence to the rational expectations equilibrium. It therefore wards off both hyperinflation
spirals on the way to rational expectations, and self-fulfilling inflation once the economy has converged to rational expectations.
In our set-up under constant-gain learning, respecting the Taylor principle does not make the economy converge to rational
expectations and only prevent hyperinflation spirals.



Table 1: Outcome Depending on Monetary Policy and the Degree of Foresight

High Foresight Low Foresight
Active Taylor Rule Unique Bounded Inflation Path Unique Bounded Inflation Path
Passive Taylor Rule Self-Fulfilling Inflation Hyperinflation Spirals
Exogenous Interest-Rate Path Self-Fulfilling Inflation Depends on the Interest Rate Path

Note: The table sums up when the economy has a unique bounded equilibrium, is subject to self-fulfilling inflation,
or diverges into a hyperinflation spiral, depending on agents’ degree of foresight and on how monetary policy is set.
An active (passive) Taylor rule is one that respects (does no respect) the Taylor principle.

have de-anchored much and there is much to re-anchor. In our main calibration, it is the short-term interest
rate 4 quarters ahead that has the highest relative anchoring effect.

This suggests that when the risk of passive monetary policy consists of hyperinflation spirals, delaying
interest rate hikes beyond the first few quarters is always ill-advised. Hiking rates today comes at the cost
of a lower output today, but delaying hikes to tomorrow will require larger hikes, with a larger output cost.
This suggests a trade-off between a recession today and a larger recession tomorrow, a trade-off on which
doves and hawks should agree to prefer the former. This however is no longer a question about active and
passive monetary policy, but a question about optimal monetary policy.

So third and finally, we derive the optimal way to anchor expectations, i.e. we solve for the optimal
monetary policy under commitment (section 4). Crucially, when the degree of foresight is low and the risk
of passive monetary policy consists of hyperinflation spirals, the optimal policy problem captures all that
is relevant to determining the best way to anchor expectations. The optimal policy no longer needs to be
implemented by combining the optimal interest rate path with an active feedback interest rate rule as it
does under rational expectations. The risks of passive monetary policy do exist in the form of hyperinflation
spirals, but the solution to the optimal policy problem already selects an interest rate path that increases
rates sufficiently to prevent such spirals.

We characterize the optimal policy through a target criterion which generalizes both the target criterion
under rational expectations and the target criterion derived by Molndr and Santoro (2014) in a model of
adaptive learning with fully backward-looking expectations. Relative to rational expectations, the target
criterion now features the cost of increasing long-run expectations, which can be expressed as the cost of
future higher inflation and output gaps. Relative to the case of purely backward-looking expectations the
target criterion still features the need to deliver on past policy promises, since the central bank can still use
its ability to commit to affect the forward-looking component of expectations.

We use the characterization of the optimal policy to assess how fast a central bank should increase interest
rates in response to a cost-push shock. We show that, contrary to what the relative anchoring effect of policy

rates at long horizons could suggest, the response strongly depends on the weight the central bank puts on



output stabilization. The more weight it puts on output, the less the central bank should increase policy
rates on impact, limiting the fall in output. While the risk of a hyperinflation spiral implies that the lower
policy rate on impact must be compensated by higher policy rates in the future, it does not mean that
the central bank engineers a recession tomorrow instead of today. Instead, it counters the hyperinflation
spiral by keeping rates high for longer, bringing down long-run expectations only slowly. While output is
persistently lower in the process, this avoids an outright recession.

This paper is related to several branches of literature. We build crucially on Woodford (2019)’s model
of finite planning horizons and long-term learning, following up on a recent literature that has adopted the
framework. Gust, Herbst, and Lopez-Salido (2022) show that it fits the dynamics of output and inflation
very well, generating macroeconomic persistence without resorting to consumption habits or mechanical in-
dexation. Gust, Herbst, and Lopez-Salido (2023) show that it also fits the dynamics of inflation expectations
in the Survey of Professional Forecasters. Woodford and Xie (2022) and Xie (2020) use it to investigate
monetary/fiscal interactions. Na and Xie (2022) show it can explain the deviations from the uncovered
interest rate parity. We use it to study de-anchoring risks. While Woodford’s model is a rare example
of a bounded rationality model that combines backward and forward-looking elements, its version without
learning connects to other models designed to solve the FG puzzle through bounded rationality, such as
Gabaix (2020) and Farhi and Werning (2019), or departure from common knowledge, such as Angeletos and
Lian (2018). Because they abstract from long-term learning, these models eliminate the risk of equilibrium
indeterminacy without creating a new risk of hyper-inflationary spirals. But this implies passive monetary
policy presents no risk in these models.

McKay, Nakamura, and Steinsson (2016) show that household heterogeneity and incomplete markets
can provide an alternative solution to the FG puzzle. In these models as well, equilibrium indeterminacy
disappears without the new risk of hyper-inflationary spirals appearing. But similarly, this implies that
passive monetary policy presents no risk in these models. Besides, Bilbiie (2020), Werning (2015) and
Acharya and Dogra (2020) show that household heterogeneity can either attenuate of amplify the FG puzzle,
depending on the cyclicality of idiosyncratic income.

The idea that too passive a monetary policy can lead to hyper-inflationary dynamics dates back to
Wicksell (1898)’s argument of the cumulative process, later developed by Friedman (1968), first formalized
by Howitt (1992), and studied in the least squares learning literature (e.g. Bullard and Mitra 2002, Evans
and Honkapohja 2003b, Preston 2005). Relative to these, the present paper analyzes de-anchoring risks in
a model where expectations are both forward and backward-looking, spanning all the intermediary cases
between fully backward and fully forward (rational) expectations. This allows to show that hyper-inflation
is the risk of concern not only in models of fully backward-looking expectations, but as soon as expectations
are not so forward-looking as to send the model into the FG puzzle. Allowing for partly forward-looking
expectations also allows to derive the interest rate horizons that matter most to bring inflation to target in

the long run. Carvalho et al. (2023) and Gati (2023) consider de-anchoring risks through learning models



with endogenous state-dependent learning gains, a dimension the FPH-learning model abstracts from.

Our results on optimal policy connect in particular to the part of the least squares learning literature
that considers optimal policy, in particular Molndr and Santoro (2014)—see also Eusepi and Preston (2018),
Gaspar, Smets, and Vestin (2010) and the references therein. This literature has emphasized that optimal
policy reacts more strongly to inflation than under rational expectations when the risk of hyperinflation
spirals exists—a result that still holds in our model. We emphasize instead that whether to increase policy
rates strongly and quickly or through a smaller but more persistent increase depends strongly on the weight
put on output stabilization. Gati (2023) shows that when the sensitivity of inflation expectations to realized
inflation is state-dependent—a feature from which our paper abstracts—the central bank reacts aggressively

when expectations de-anchor, allowing it to react less aggressively when they are anchored.

1 Woodford’s Boundedly-Rational New-Keynesian Model

To study de-anchoring risks, we build on Woodford (2019)’s model of bounded rationality. We start by
laying out Woodford’s model and putting it in a tractable form. Woodford’s model is an generalization to

bounded rationality of the canonical three-equation New-Keynesian model under rational expectations

ye = —0(is — Be(miy1)) + Er(yera) + v, (1)
e = K(ye — y5) + BE(miq1) + vf, (2)
it = OxTe + Oyls. (3)

where 7, is inflation, y; is output, yy is efficient output which is a function of productivity, i; is the short-term
policy rate, vy and v} are demand and cost-push shocks, and equations (1)-(2)-(3) are the Euler equation,

New-Keynesian Phillips curve, and the Taylor policy interest-rate rule.® Denote it in matrix form

Y, = AE (Yiq1) + buy, (4)

where Yy = (yg, 7)), vy = (WY, VP — ky¢), and A and b are matrices given in appendix A.

1.1 Finite Planning Horizons

Woodford’s model embeds two forms of departures from rational expectations. First, firms and household
are assumed to have finite planning horizons. They are assumed to perceive future shocks and to reason
through their consequences on endogenous economic variables only until h periods ahead. To evaluate the

consequences of their choices beyond their planning horizon A however, they rely on an approximate value

6Contrary to Woodford (2019), we specify preference demand shocks as discount factor shocks so that they appear as a
time-t shock only in the Euler equation. This is simply to avoid having to write the model in bloc form with ¢t + 1 shocks on
top of ¢t shocks, a straightforward but cumbersome extension.



function under which all variables that they take as exogenous, such as output and inflation, are equal to
their long-run values. When finite planning horizons are the only form of bounded rationality, their long-term
value functions is taken to be constant. Woodford shows that an agent with planning horizon h perceives
the economy to satisfy the recursion (4) up to its planning horizon h, and imposes the terminal condition
Yi1nt1 = 0 at the end of its planning horizon. As a consequence, its perception Y;* of output and inflation

at t solves
h

}/th = Et Z Aijt+j. (5)

§=0
Under the assumption that planning horizons are distributed according to a geometric distribution, with
a share (1—p)p" of households and firms having planning horizon h, the model under FPH can be aggregated
into

Yi = pAE(Yit1) + bu, (6)

where p € [0, 1] increases with the average planning horizon N = p/(1 — p) in the population and param-
eterizes the degree of foresight of firms and households. Rational expectations correspond to the limiting
case where planning horizons are infinite p = 1. Relative to rational expectations, finite planning horizons
make firms and household discount the future further, providing a solution to the FG puzzle. As such, finite
planning horizons capture a departure from rational expectations shared with other solutions to the FG
puzzle based on bounded rationality, such as Gabaix (2020), Farhi and Werning (2019), Angeletos and Lian
(2018).

1.2 Long-Term Learning

Finite planning horizons can be combined with a second, distinct departure from rational expectations: long-
term learning. With long-term learning, households and firms do not take their long-term value function to
be constant, but adjust it to their evolving expectations of long-run inflation 7f_; and output y;_;, which

they build from past realized inflation and output, according to the constant-gain updating rules

yrt =y 4+ (1 - )yl (7)

mt = pmly + (1= p)my, (8)
where 1 € [0,1].7 Denote it in matrix form

Y= pYh 4 (- Y, (9)

"We index long-term expectations of inflation and output by ¢ — 1 so underline that they are predetermined at t. Indeed,
long-run expectations 7} fl and y; fl use only past and not present realizations of inflation and output. Similarly, we index the
backward-looking component Y® below with the time index t — 1 to underline that it is a state variable. This is only a change
in notations however: the variables are defined in exactly the same way as in Woodford (2019). Another notation change is

that we use the AR(1) notation p in equations (7) and (8) instead of the gain notation v =1 — p.



where Y;*h = (i, mih.

Long-term learning captures a departure from rational expectations shared with other models of learning,
such as least squares learning (Bullard and Mitra 2002, Evans and Honkapohja 2003b, Preston 2005). It adds
a backward component to expectations that will be essential to capture de-anchoring risks. However, the
combined FPH-learning model differs from usual learning models in that firms and households only form their
long-run expectations in a backward-looking manner. Up to their planing horizons, their expectations remain
forward-looking—though of course affected by their expectations for the long run. Ultimately, expectations
in the FPH-learning model are partly forward and partly backward. This implies that policy announcements
about the future have an effect on expectations right away.

A low value of u (a high gain 1 — u) implies that long-run expectations react quickly and strongly to
recent realizations of inflation and output. A high value of p in contrast implies that long-run expectations
drift only slowly and only as a consequence of persistent changes in realized inflation and output.® At the
limit p = 1, long-run expectations are constant so they cannot de-anchor. In this case, the model reverts
to the model under finite planning horizons only (6). The model assumes that p is constant, i.e. abstracts
from time variation and state dependence in the learning gain. See e.g. Carvalho et al. (2023) and Gati
(2023) for examples of models with endogenous state-dependent learning gains.

Woodford (2019) shows how the terminal value function of firms and households depend on long-run
inflation and output expectations in the FPH-learning model. In Appendix B we show that the FPH-learning
model can be rewritten in the following way. A firm or household with planning horizon h still perceives the
economy to satisfy the recursion (4) up to its planning horizon h, but now imposes the terminal condition
Yirhe1 = Y at the end of its planning horizon. As a consequence, its perception Y;* of output and inflation

at t now solves
h

Y= By Albyg 4 AR (10)
j=0

Under the assumption that planning horizons are distributed according to a geometric distribution, the

FPH-learning model aggregates into

o0

Y =E; Y (pA)Y bugrj + (I — pA)~ (1 = p)AY . (11)
j=0

8 A higher value of i can be interpreted as expectations that are better anchored, in the sense that the sensitivity of long-run
expectations to recent realizations of inflation is low. We refrain from using this terminology however, in order not to bring
confusing with the other meaning of anchoring expectations, which is the one we use in this paper. We will say the central
bank anchors expectations when it reacts enough to guarantee that long-run expectations are brought back to target at least
at some point in the future, even under a low u. In Woodford (2019)’s set-up with an exogenous constant-gain parameter, the
central bank cannot anchor expectations in the alternative sense of making them less responsive to recent inflation even without
increasing rates ex post.

9Rigorously, at the limit u = 1, inflation expectations are constant but not necessarily at the assumed stead-state. We
assume they are fixed at the assumed steady-state in this case, so that the model under FPH only corresponds to the limit of
the FPH-learning model at p = 1.



where Y;* is the average long-run expectation of inflation and output that solves the recursion

Vi =pY + (1 - )Y (12)

Define
thbfl = - PA)_1(1 - P)Ay{ih (13)
v/ =Y, -v), (14)

the backward-looking and forward-looking components of Y;.!° The FPH-learning model (11)-(12) can be

written as

Y/ = (pA)E(Y/,) + buy, (15)

Vo= (Wl = 0= o) 0 A )Y+ (@ pa) - pa)ye o)

2 The Taylor Principle in the Face of Two Risks

In this section, we show that active monetary policy is necessary to retain control over inflation expectations,
but that, as soon as the model is not subject to the FG puzzle, the risk it prevents is no longer self-fulfilling
inflation but hyperinflation spirals. To do so, we assume that the central bank follows the Taylor rule (3)

and derive under which conditions it delivers a unique bounded solution.

2.1 Stability with Finite Planning Horizons but no Long-Term Learning

Before getting to this result, consider the stability of the economy under finite planning horizons alone,
abstracting temporarily from long-term learning. This corresponds to the particular case p = 1 where long-
run expectations always remain on target. Appendix C shows that the FPH-only economy (6) has a unique

bounded equilibrium if and only if the smaller eigenvalue \3(¢) of A~! is greater than p,!!

A2 (d)] > p- (17)

If the economy does not have a unique bounded solution, there is an infinity: inflation is self-fulfilling.

Under rational expectations p = 1, the determinacy condition (17) is equivalent to the Taylor principle

b + ﬁ% > 1. (18)

K

0For readability, we use the notations th and Y | instead of ¥; and Y;_1 in Woodford (2019).
11'We spell out the dependence of the eigenvalues A} in ¢ = (¢x, ¢y) in order to highlight that it depends on the responsiveness
of monetary policy.



Table 2: Default Calibration

Parameter Value Interpretation Note

B 0.995 Discount Factor

o 0.5 Intertemporal Elasticity of Substitution

K 0.04  Phillips Curve Slope

p 0.5  Forward-lookingness of Planning Gust et al. (2022)
] 0.9  Persistence of Learning (one minus learning gain)  Gust et al. (2022)

Note: The table gives the default calibration used in the paper whenever not stated otherwise. The calibration is quarterly.

As the average planning horizons of agents decreases however, p decreases below 1 and the determinacy
condition (17) becomes easier and easier to satisfy. It holds for lower and lower values of ¢, and ¢,, putting
a less demanding requirement on the responsiveness of monetary policy than the Taylor condition under

rational expectations (18). Appendix C shows that for p below the threshold

_ l+ok+B—+/(1+ok+pB)2—48

% (19)

the equilibrium is determinate even under a fully unresponsive monetary policy ¢, = ¢, = 0—an interest
rate peg. For a standard calibration of the structural parameters § = 0.995, ¢ = 0.5, k = 0.04 (Table 2),
the threshold value is p* = 0.87.

That not even a weakened version of the Taylor principle is necessary to ensure determinacy when p < p*
questions the practical relevance of the Taylor principle in keeping control over inflation expectations. All the
more so that for higher values of p > p* for which some responsiveness of monetary policy remains necessary,
the New-Keynesian model yields widely unrealistic predictions on the effect of interest rate changes—the
forward guidance (FG) puzzle. Under rational expectations, and for degrees of foresight p > p*, announcing
an interest rate cut n periods ahead has an effect on output and inflation that increases with the horizon
n of the announcement, and becomes infinitely strong as the horizon of the announcement increases. The
threshold on the degree of discounting p necessary to get rid of the FG puzzle turns out to be exactly the same
as the threshold (19) that guarantees determinacy under a peg (see e.g. Dupraz, Le Bihan, and Matheron
(forthcoming) for a proof). Finite planning horizons—as well as related models of cognitive discounting
such as Gabaix (2020) and Farhi and Werning (2019)—solve the FG puzzle, but taken alone they suggest

monetary policy does not need to worry about losing control over inflation expectations.
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2.2 Stability with Finite Planning Horizons and Long-Term Learning

We now show that the risk of losing control over inflation expectations resurfaces when adding back long-
term learning. Crucially though, it resurfaces under a different form: hyperinflation spirals. This risk, which
is arguably more present on central bankers’ mind, is distinct from the risk of indeterminate inflation. With
an hyperinflation spiral, the risk is instead that inflation become very determinate in a very undesirable
direction.

We map the risk of hyperinflation spirals into Blanchard and Kahn (1980) arithmetic, like has long been
done for the risk of self-fulfilling inflation. While self-fulfilling inflation occurs when an economy has more
roots within the unit circle than it has state variables, hyperinflation spirals occur when an economy has
more roots outside the unit circle than it has jump variables. In such a situation, the economy has no
bounded solution: all equilibria are explosive.'?

Because long-run expectations are state variables, hyperinflation spirals can occur. To determine when

they do, Appendix D derive the roots of the FPH-learning economy.

Lemma 1. The roots of the FPH-learning New-Keynesian economy (15)-(16) are the following direct func-

tion of the roots NI (¢) of the economy under rational expectations

N(8) = S Xi(0), (20)
W6 =i+ (=)= 0 (555 =)
fori=1,2.

With these closed-from expressions for the roots of the FPH-learning economy, it is possible to determine

its stability. Appendix E shows the following result.
Proposition 1. Consider the case with long-term learning p < 1.
1. If the Taylor principle (18) is satisfied, then the FPH-learning economy has a unique bounded solution.

2. If the Taylor principle (18) is not satisfied, let 0 < A\3(¢) < 1 be the smaller root of the economy under

rational expectation. Unless (p, u) satisfy:

pe [rston 5 @+ ason], (22)
W e {0, W] . (23)

the FPH-learning economy does not have a unique bounded solution. In this case

12While the absence of non-explosive path captures the idea of an hyperinflation spiral, the infinitely of explosive paths can
also suggest a form of indeterminacy among hyperinflation paths. Section 3 will however show that one particular hyperinflation
path stands out, on which temporarily explosive hyperinflation dynamics can occur even when inflation eventually returns to
target.

11



(a) If p > A5(9), then the equilibrium is indeterminate.

(b) If p < N5(), then there is no bounded equilibrium.

Proposition 1 first states that, up to the narrow exception (22)-(23), the Taylor principle remains neces-
sary and sufficient for a unique bounded solution to exist under a Taylor rule. We argue that the exception
is an unappealing knife-edge case, which can be treated as economically irrelevant. It is unappealing because
one of the roots of the system is then negative. It is a knife-edge case because it concerns only a very
narrow set of values for p and u. For instance, in our baseline calibration 8 = 0.995, k = 0.04, ¢ = 0.5,
for ¢, = ¢, = 0, which is the case most conducive to condition (22)-(23), the condition is only satisfied for
p € [0.87,0.94], each time for only a subset of values of . One way to get rid of this economically irrelevant
case is to consider that the FPH-learning economy under a given value of p is stable if and only if it has
a unique bounded solution for any value of u € [0,1). Under this definition, Proposition 1 states that the

economy is stable if and only if the Taylor principle is satisfied.

Corollary 1. For a given value of p, the FPH-learning economy has a unique bounded solution for all

0 < p < 1 if and only if the Taylor principle (18) is satisfied.

But second, Proposition 1 states that when the Taylor principle is not satisfied, what the FPH-learning
economy runs into is not, in most cases, equilibrium indeterminacy but hyper-inflationary spirals. For p
close enough to 1, p > A3(¢), equilibrium indeterminacy still obtains, as it does under rational expectations.
But such high values of p are also ones for which the model is subject to the FG puzzle, which occurs
whenever p > A5(0) = p*. When p is low enough to solve the FG puzzle, the model is no longer subject to
equilibrium indeterminacy. Both A (¢) and A () are then outside the unit circle, like in the FPH model
without learning. Yet crucially, A5(¢) is then necessarily outside the unit circle as well, so that the economy
has 3 roots outside the unit circle, and only one inside, the condition for an absence of bounded solution.
The economy necessarily falls into an explosive inflationary of deflationary spiral as expectations spiral out
of control. Pushing the risk of self-fulfilling inflation out the door, it comes back through the window in the
form of hyper-inflationary spirals.

Figure 1 gives a graphical illustration of Proposition 1. The diagram represents the 3 possible stability
cases as a function of the strength of the feedback in the Taylor rule ¢, + %qby on the x-axis, and of the
degree of cognitive discounting p on the y-axis. On the diagram, we abstract from the economically irrelevant
border-line case associated to condition (22)-(23). Whether the economy has a unique bounded equilibrium
or not depends only on the strength of the feedback in the Taylor rule on the x-axis. But respecting the
Taylor principle cures very different ailments depending on the value of p. Except under very high p > p* for
which the model is subject to the FG puzzle, too passive a monetary policy does not lead to indeterminacy
but to the absence of bounded solution.

What makes the economy inherently unstable under passive monetary policy when p < A3(¢)? The eco-

nomic mechanism is the one underlying Wicksell’s cumulative process argument against interest rate pegs,
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later developed by Friedman (1968), first formalized by Howitt (1992), and studied in the least squares learn-
ing literature (e.g. Bullard and Mitra 2002, Evans and Honkapohja 2003b, Preston 2005).'*> When monetary
policy is not responsive enough, not responding strongly enough to inflation allows transitory shocks to send
the economy on a hyper-inflationary (or hyper-deflationary) spiral. Suppose a transitory demand shock (say)
hits the economy. Higher demand pushes inflation up, which increases long-term inflation expectations and
therefore all inflation expectations. Although the shock then dissipates, households’ inflation expectations
are now higher, which—absent a strong enough reaction from monetary policy—decreases ex ante perceived
real rates. This increases aggregate demand, which increases inflation further, and so on, in a self-feeding
spiral. As a consequence, there exists no bounded solution, the exact opposite problem of the infinity of
bounded solutions that arises under rational expectations, and more generally when p > A5 (o).

Proposition 1 captures the logic of the cumulative process within a model that has both a forward-looking
component, and a backward-looking, learning component. By bridging the gap between the two polar cases
of fully rational expectations p = 1, and purely backward-learning expectations p = 0, it shows that the
generic risk of a passive monetary policy is hyper-inflationary spirals, not indeterminacy, unless for high

values of p that send the model into the FG puzzle.

3 Beyond Taylor Rules

Proposition 1 states that when restricting monetary policy to the Taylor rule (3), keeping control over
inflation expectations requires to respect the Taylor principle (18). But is following a Taylor rule necessary
to keep control over inflation expectations? Under rational expectations, it is: Interest-rate policy must
necessarily be specified as a feedback rule—a Taylor rule of some form (McCallum 1981). Specifying monetary
policy as an exogenous interest rate path results in indeterminacy, just like it does under an interest rate
peg. The result extends to the FPH-learning economy when the degree of foresight is high enough that the
risk of passive monetary policy lies in equilibrium indeterminacy.

In this section, we show that when the degree of foresight is low enough that the risk of concern is
hyperinflation spirals, following a feedback rule is no longer necessary to keep control over inflation expec-
tations. To be sure, many interest-rate paths fail to keep inflation expectations in check. For instance, a
constant interest rate—an interest rate peg—results in a hyperinflation spiral since it is a particular case of
Proposition 1 for ¢, = ¢, = 0. But for a large class of exogenous paths for the policy rate, the equilibrium is
determinate and bounded, and inflation returns to its target in the long run. We characterize all the interest
rate paths that bring inflation back to target in the long run. We then show that this characterization allows
to determine how powerful interest rate hikes of different horizons are at bringing inflation expectations back

to target.

13In the least squares literature, when learning is done with a decreasing gain the Taylor principle not only prevents the
cumulative process but also guarantees convergence to the rational expectations equilibrium, a stronger stability result. When
learning is done with a constant gain, there is no convergence to rational expectations. On the stronger requirements for
stability brought by a constant gain under adaptive learning, see e.g. Evans and Honkapohja (2009).
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Figure 1: Existence of Solutions in the FPH-Learning New-Keynesian Economy

Note: The diagram represents the 3 possible situations that can arise as a function of the degree of bounded-rationality
discounting p and the strength of the response in the Taylor rule ¢+ %(j)y. The frontier between the indeterminacy
region and the no-solution region plotted in bold is the one for ¢, = 0, which is the one for which the indeterminacy
region is the largest. In dashed lines are the frontiers for higher values of ¢y = 0.1,0.2. The shaded region represents
the calibrations under which the model is subject to the FG puzzle: for p > X3(0) = p*.

3.1 All the Anchoring Interest Rate Paths

We assume that monetary policy is no longer set as the Taylor feedback rule (3), but as an exogenous interest
rate path (44 ())n>0. An interest-rate path is exogenous if is not specified as a function of endogenous
variables such as inflation and output today or tomorrow (Yiyn,Ti4n)n>0. But it can be a function of the
exogenous process v, something we highlight through the notation i;().'* It can also depend on the lagged
endogenous state (y?_,,7_;) at t, since it is predetermined at . What we exclude is a dependence on
current and future inflation and output, i.e. the one dependence that is critical to ensure determinacy under
rational expectations, by stipulating a response of monetary policy off the equilibrium path.'®

The FPH-learning economy is then described by (15)-(16) for ¢, = ¢, = 0, only adding the new non-

M Our specification of monetary policy is similar to the one advocated by Beaudry, Portier, and Preston (2023) as an alternative
to Taylor rules. Relative to them, we allow monetary policy to adjust its entire future expected path for the policy rate in
response to changes in fundamentals.

I5What we restrict to is therefore, in the terminology of Evans and Honkapohja (2003b, 2006, 2003a), fundamentals-based
policy rules. Our point is not to dismiss feedback rules—e.g. Evans and honkapohja’s expectations-based policy rules—which
can have the benefit of simplicity and robustness. Instead, the point is that implementability is no longer an issue away from
rational expectations, so that a comparison of various policies within a given model can be done without the need to restrict
to a class of policies.
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homogeneous term in i;(v)

= (pA0) Ey(Y{,,) + bove — biyir(v), (24)

yp = </~L1+(1—/~L)(I—PAO)1(1—P)A0>Ytb1+<(1—/~L)(I—PA0)( A, (29

where Ay and by denote the matrices A and b for ¢ = ¢, = 0 and the expression of matrix b is given in
appendix A.

We consider the case where the model is not subject to the FG puzzle p < p*. From Proposition 1, the
root A5(0) is then outside the unit circle A5(0) > 1 and there is no bounded solution if the nominal interest
rate is kept constant. Yet, Appendix F shows that a large class of non-constant interest rate paths can

deliver a bounded determinate solution, characterized in the following proposition.

Proposition 2. Let €} be the left eigenvector associated to the root \5(0) < 1 of Ay', and 25, =ehY) ).

The FPH-learning economy (24)-(25) has an unique equilibrium where inflation and output remain
bounded and the economy returns to steady-state in the long run if and only if the interest rate path
(t44n (V)0 s such that Ey(z2,4x) — 0 as k — oo.

The variable E(z2,4+1) depends on the interest rate path (iy4n(V))n>0 through:

Ey(z2,04%) = 25(0)7125 ,_ + (A5(0 (Z Ok(n) By (v2,4n — Chirn(v Z Ye(n)Ey(va 40 — ciziprn(y))) ,
n=k+1
(26)
n+1 n+1
1 1
(Af<o>) B (Ab(m)
where ¢r(n) = A5(0)F 222 T = ) (27)
M) A5(0)
bo)k+1l _ k+1 "
) = MO O] ) , (28)
(0) = AL (0) A3(0)

where vy is a function of the shocks vy and ¢k is a constant given in appendiz F.

Proposition 2 captures the following intuition. Because the root A5(0) is larger than 1, the FPH-
learning economy (24)-(25) has a natural tendency to make inflationary shocks snowball into hyperinflation—
Wicksell’s cumulative process. Whenever long-run expectations are not exactly equal to their steady-state
values at t, zg}t,l # 0, inflation (and output) is expected to diverge exponentially even absent any future
shock. Under an interest-rate peg, this necessarily results in inflation diverging to infinity.

Yet an interest rate path that sufficiently increases interest rates can counter the inflationary shock and
bring inflation back to target. The increase in rates can occur either now or tomorrow, but the size of the
necessary increase is different depending on when it occurs. Delaying the increase in rates to the future puts
the economy temporarily on the explosive path determined by the root A5(0).

The idea that sufficiently strong interest rates hikes are necessary to stabilize inflation expectations
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captures an intuition similar the Taylor principle when monetary policy is restricted to a Taylor rule. Yet
Proposition 2 characterizes what interest rate hikes are necessary without first restraining monetary policy
to a given class of interest rate rules. Given expectations on future shocks and current values of long-term
expectations, the characterization 2 assesses whether a given expected path for the policy rate is enough to
counter the default tendency of inflation to spiral into hyperinflation. As such, it characterizes the paths for
the policy rate that constitute active monetary policy.

We now show that this characterization allows to assess the horizon of interest rate hikes that matter
most for bringing inflation back to target. We first argue that Taylor rules and the Taylor principle provide

little guidance on this issue.

3.2 What Horizons of Rates Matter? The Limited Guidance of Taylor Rules

Under rational expectations, a Taylor rule that respects the Taylor principle wards off self-fulfilling inflation
and allows to keep control over inflation expectations. Following such a Taylor rule appears therefore to be
a sound advice for central banks, and a natural benchmark to assess whether a central bank is doing enough
to counter an inflationary shock. In effect, when in 2021-2022 inflation in the US and many other countries
started reaching levels not seen in 40 years, several central bankers and outside observers use Taylor rule
benchmarks to assess whether the Federal Reserve and other central banks were lagging behind the curve in
their response to inflation.'6

As far as ensuring equilibrium determinacy is concerned however, Taylor rules provide little practical
guidance on how fast to increase interest rates. While in the previous section we considered the simple
Taylor rule (3) that responds to current inflation and output only, the interest-rate feedback rules that

guarantee determinacy is considerably larger. In particular, the typical Taylor rule considered in applied

work generalizes the rule (3) to include interest-rate inertia

it = prit—1 + (1 — pr)(@* + ¢n(me — 7°) + ut). (29)

The rule (29) has the policy rate respond to deviations of year-on-year inflation 7; from the inflation target
7* and to the output gap x;, with inertia captured by the coefficient pr on the lagged policy rate i;_;. Large
enough values of the coefficients ¢, and ¢, still guarantees determinacy in standard New-Keynesian models,
but crucially do so for all values of pr between 0 and 1. For example, in the baseline New-Keynesian model
(1)-(2), the condition for determinacy is the Taylor principle (18) for all value of p between 0 and 1. As a
result, a central bank seeking to ensure equilibrium determinacy has an infinitely of Taylor rules to choose
from, with widely different recommendations as to the size and timing of interest-rate hikes

To illustrate this, Figure 2 plots the policy rate paths that the rule (29) would have recommended the

16Examples of policy-makers and commentators using Taylor rules to make the case that the Fed was lagging behind include
for instance Bullard (2022) and Buiter and Sibert (2022). Both use a Taylor rule with no inertia. Bullard notes that the Fed
did not look as far behind when using the 2-year Treasury yield instead of the short-term policy rate.
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Figure 2: Interest Rate Paths Recommended by Various Taylor Rules in February 2022

Note: The three interest rate paths correspond to the paths that the Taylor rule (29) would have recommended for
the Fed to follow in February 2022, for ¢x = 1.5, ¢z = 0.5 and various calibrations of the inertia parameter pp.
The forecasted paths for the nominal interest rate are calculated using the SPF median expectation for the path of
inflation and unemployment in February 2022. The steady-state nominal rate t* is taken to be 1.8% (a real rate of
-0.2%), its average from 2000 to 2019. Inflation 7 is taken to be year-on-year PCE core inflation, and the inflation
target m* = 2%. The output gap is prozied with (minus) twice the unemployment gap, in accordance with an Okun’s
coefficient of 2. The unemployment gap is calculated as the difference between the SPF median expectation of the
unemployment rate and the CBO expectation of the natural rate of unemployment.

Fed to follow in February 2022, right before the Fed’s first interest-rate hike of March 2022, setting the
coefficients ¢, and ¢, to standard values that guarantee equilibrium determinacy, but varying the inertia
coefficient pr to 0, 0.85 and 0.99. While all three rules prevent equilibrium indeterminacy, they offer widely
different recommendations as to how fast to raise interest rates.'”

Whether using Taylor rule benchmarks or not, the question of whether a central bank is lagging behind
the curve is typically assessed by looking at whether interest rates have increased enough. But in doing
so, beyond the issue of assessing what level of interest rates is sufficiently restrictive, a key issue is what
maturity of interest rates is the relevant one to look at.!® On the one hand, many consumption and investment

decisions depend on rather long-term rates. On the other hand, tightening only through a commitment to

170f course, the recommendations of different Taylor rules can be evaluated and compared through a loss function. We will
precisely turn to evaluating policies using the central bank’s loss function in Section 4, but without restricting policy to belong
to a particular class.

18This was again debated in Spring 2022 concerning the Federal Reserve in the US. For instance, on April 5, 2022, Larry
Summers argued against Paul Krugman’s argument that “only future rates are relevant to spending”, reminding the “decades-
long tradition of using real Treasury bill or Fed Fund rates to index monetary policy” (Summers 2022).
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raising short-term rates in the future runs the risk of letting expectations de-anchor, requiring higher hikes
in the future.

What horizon of interest rates matters most to bringing inflation down then? We argue that the rational-
expectations set-up is ill-suited to answering this question. Because it assimilates the risks of losing the
inflation anchor to self-fulfilling inflation and not to hyperinflation spirals, it does not capture the idea that
waiting too long to increase interest rates will give time for inflation expectations to de-anchor. But the

FPH-learning model allows to make sense of the trade-off between these two opposing forces.

3.3 The Relative Anchoring Effect of Interest Rates of Different Horizons

Proposition 2 states that there are infinitely many interest rate paths that guarantee inflation returns to
target in the long run. We now show that along all these paths, the power of the interest rate i;,,, at horizon
n at bringing inflation down is however the same. Intuitively, from equation (26), the interest rate path

affects the terminal value of 2 through the weighted average of present and future interest rates

E; (Z d)k(n)it_,_”(v)) : (30)
n=0

This makes it possible to define the relative anchoring effect of the interest rate i;y, at horizon n as the

effect it has on the long-term value of 25, relative to the effect of the current interest rate ;.

Definition 1. The effect of the interest rate at horizon n 44y on Ey(zo44r) relative to the effect of the
current interest rate iy is the same for all k > n.

The relative anchoring effect v(n) of the interest rate at horizon n iy1, is defined as

(aEt(Z2.t+k))

. Ottyn

’Y(TL) o (8Et(z2,t+k) )
iy

fork >n.

Since we define the relative anchoring effect of the interest rate 4,1, relative to the one of the current
interest rate i;, by construction ¥(0) = 1. That the power of i;;, to anchor Zg,t 4 Do longer depends on
the horizon k for k > n follows from the fact that past ¢t + n, the effect of the interest rate at ¢ + n only
manifests itself through the effect it left on the state at ¢ +n, 23 ,,,,. Beyond ¢ + n, any departure of 23, ,
from zero will grow exponentially with & at the rate of the explosive root A3(0) > 1, which is independent
of n. Because we define the relative anchoring effect relative to the once of the current interest rate, the
divergence at rate A\5(0) cancels out in (31).

Appendix G derives the expression for the relative anchoring effect v(n).
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Proposition 3. The relative anchoring effect v(n) of the interest rate iy, at horizon n is

o ) = () )

MO MO

Figure 3 plots the relative anchoring effect vy(n) as a function of the horizon n, for various values of
the cognitive discounting parameter p and the expectations persistence parameter p. Crucially, the relative
anchoring effect y(n) is a single-peaked function of the horizon and peaks at an intermediary horizon. This
intermediary peak horizon strikes a balance between two opposite forces.

First, short-horizon rates do not affect aggregate demand for many period, so they have a moderate power
to cool down the economy. As the horizon n increases, an increase in i4,,, affects aggregate demand at all
periods between t and ¢t +n and is therefore better able to cool down the economy. This first effect is present
under rational expectations as well but not in purely backward-looking models where aggregate demand
does not depend on the entire yield curve beyond present short-term rates. Accordingly, if in the model
expectations are purely backward-looking p = 0, the relative anchoring effect v(n) is a strictly decreasing
function of . Current policy rates are then the ones that matter most. But with p > 0, the relative
anchoring function + is at first increasing in the horizon n.

Yet, as n increases, a second force becomes dominant and makes v decreasing. The more the increase in
rates is delayed, the more expectations de-anchor, requiring a stronger rate hike in the future to re-anchor
expectations. This second effect exists only when hyperinflation spirals are possible and is therefore absent
under rational expectations. It is also absent at the limit where long-run expectations are fixed p = 1, as
there is then no risk of de-anchoring.

The horizon of interest rate hikes that matters most for re-anchoring expectations is intermediary, long
enough to affect long-term rates but not so long that it mostly cools the economy once expectations have
de-anchored much and there is much to re-anchor. It increases when expectations are more forward-looking
(higher p) and when long-run expectations react less to recent inflation (higher p). In our main calibration
in Table 2, which assumes p = 0.5 and g = 0.9 as estimated by Gust, Herbst, and Lopez-Salido (2022),
the horizon of short-term interest rates with the highest relative anchoring effect is 4 quarters ahead, which
matters around twice as much as current short-term rates. For the values of p and p plotted on the figure,
the horizon with the highest relative anchoring effect varies between 4 and 8 quarters ahead.

Figure 4 illustrates the relative anchoring effect of interest rates at different horizons through the following
thought experiment. We assume that the economy is hit in period 0 by a transitory cost-push shock, and
consider the response of the economy under various responses of monetary policy. The thick black line
corresponds to the case where monetary policy is fully passive: it does not increase interest rates at any
horizon. As a result, while the inflationary shock quickly fades away and inflation falls back strongly in
period 1, the shock has shifted long-term inflation expectations, however slightly. Because monetary policy

is fully passive, the cumulative process sets in and inflation slowly but inexorably drifts up. The thin blue
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Figure 3: The Relative Anchoring Effect of Interest Rates of Different Horizons

Note: Both panels plot the relative anchoring effect v(n) of the interest rate at horizon n as a function of the horizon
n. On the left panel, each curve plots the relationship for a different value of the cognitive discounting parameter p,
keeping the expectations persistence parameter fized to p = 0.9. On the right panel, each curve plots the relationship
for a different value of the expectations persistence parameter u, keeping the cognitive parameter fized to p = 0.5.
The calibration for the structural parameters is f = 0.995, o = 0.5, k = 0.04.

curves correspond to different cases where monetary policy reacts sufficiently to bring the economy back
to its stable trajectory. On each curve, the central bank increases the policy rate in a single quarter. The
different curves correspond to different choices of the horizon at which it does so, each spaced by two years.
The required size of the increase in the policy rate is smaller when done two years after the shock than when
done on impact, but increases steadily afterwards. As a consequence, beyond the first two years, the more

delayed the hike is, the larger the fall in output that it causes.

4 Optimal Anchoring Policy

That delaying rate hikes beyond the first few quarters increases the size of the required hikes suggests that
delaying hikes beyond these first quarters is always ill-advised. Hiking rates today comes at the cost of a
lower output today, but hiking tomorrow instead will require larger hikes, with a larger output cost. This
suggests a trade-off between a recession today and a larger recession tomorrow, on which doves and hawks
should agree to prefer the former. This however is no longer a question about active and passive monetary
policy, but a question about optimal monetary policy. In this section, we therefore solve the central bank’s

optimal policy problem under commitment to find the best path of interest rates among those that bring
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Figure 4: Hiking Now vs. Hiking Tomorrow

Note: The figure gives the response of the economy to a transitory cost-push shock in period 0 under various responses
of monetary policy. On the thick black line the central bank does not react at any horizon. On the thin blue curves
the central bank responds by increasing its policy rate in a single period, by the amount just necessary to bring the

economy back to its stable trajectory. The calibration is the one given in Table 2.
inflation back to target in the long run.

4.1 Characterization: A Generalized Target Criterion

We solve for the optimal monetary policy under commitment in the FPH-learning model (15)-(16). We

assume the central bank has a dual mandate to stabilize inflation and the output gap, with a given weight
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w on the output gap so that its loss function is'®

— 1
By 5 (i +wai). (33)
t=0

where z; = y; — yf is the output gap. We assume that the central bank has rational expectations, i.e. that
it fully understands the way in which firms and households form expectations, and therefore the associated
de-anchoring risks of failing to react to the shocks that hit the economy. The program of the central bank is
therefore to minimize the loss (33) subject to the constraint of the dynamics of the FPH-learning economy
(15)-(16).

Appendix H derives the following characterization of the optimal policy in the FPH-learning model.

Proposition 4. Let My = (I — pAg) (1 — p)Ag and Q = [w,0;0, 1].
The optimal policy that minimizes the loss function (33) under commitment is characterized by the fol-

lowing target criterion

1
G+l =0, (3)
where
Y — way + (1 — )y is the marginal cost of higher output at t, (35)
(F=my+ (1 —p)y7 s the marginal cost of higher inflation at t, (36)
(W AT ) =B (B + (1 — 1) M) Ve BMEQ( Vs — Vi psr) (37)
k=0

is the marginal cost of higher long-term expectations at t.

Together with the dynamics of the economy (15)-(16) it defines a unique equilibrium path for inflation,
output and the policy rate.

To understand the target criterion (34), it is useful to see how it generalizes the target criterion under
rational expectations. When expectations are rational p = 1, My = 0 and so 7} = 0. The target criterion

(34) reduces to the classic target criterion
w
7Tt+g($t—xt_1)=0. (38)

The rational expectations target criterion sets to zero the sum of the marginal cost of higher inflation, plus

19We take this objective as given by the central bank’s mandate. It can be shown that in the model under rational expectations,
under Calvo price-setting the loss function derived from the representative household’s preferences are of the form (33) with
w = k/0, where 6 is the elasticity of substitution across goods (Woodford 2003, , chapter 6). For a small slope of the Phillips
curve k this puts little weight on output relative to inflation stabilization. The welfare costs under Calvo price-setting are
however known to be suspiciously large (Nakamura et al. 2018), so we treat w as an exogenous parameter. In the version of
the FPH-learning model that we consider where planning horizons are heterogeneous among the population, the loss function
derived from households’ preferences under Calvo pricing is no longer of the form (33) as it is under rational expectations—see
Woodford and Xie (2022).
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times the change in the marginal cost of a higher output gap. The marginal cost of higher inflation is simply
m; and the marginal cost of a higher output gap is simply ;. The fact that the marginal cost of a higher
output gap yesterday is subtracted to the criterion is the mark of optimal policy under commitment. This
history-dependence captures the fact that the optimal monetary policy must delivers on the past promises
that it made yesterday in order to move forward-looking expectations yesterday.

The generalized target criterion (34) modifies the one under rational expectations in two ways. First, the
cost ¢ of higher inflation at ¢ now includes the cost 77" of causing higher long-term inflation expectations
from tomorrow on—and similarly for the cost of higher output.?® The cost of higher long-term expectations
corresponds itself to the higher inflation and higher output that higher long-term expectations will cause in
the future, all else being equal. They can therefore be expressed as a discounted sum of future inflation and
future output gaps—equation (37).

Second, because expectations are less forward-looking, the term ¢} that captures the commitment of the
central bank to past promises is now discounted at the rate p. The less forward-looking expectations are, the
less the central bank can use its ability to commit to move the forward-looking component of expectations—
and so the less it needs to fulfill past promises. When expectations are purely backward-looking p = 0, there
is no role for commitment and so no constraint from past promises. The policy under commitment does not
differ from the policy under discretion. Whenever expectations are partly forward-looking p > 0, a role for
commitment and past promises is restored, although it is weaker than under rational expectations.

If the target criterion (34) generalizes the one under rational expectations, il also generalizes the one
derived in the adaptive learning model of Molndr and Santoro (2014) where expectations are purely backward-
looking. Indeed, Appendix I shows that in the case of purely backward-looking expectations p = 0, the target

criterion (34) reduces to

k=0

T+ = (ast — (1~ u)E, (Z(ﬁu)kEth+k+1>> =0, (39)

which is the target criterion in the model of Molnar and Santoro (2014).2!

4.2 Self-Implementing Policy

The characterization of the optimal policy in Proposition 4 holds for any value of p € [0, 1]. There is however
a key difference depending on whether the degree of foresight p is above or below the threshold p*. When
foresight p is greater than p* and passive monetary policy leads to equilibrium indeterminacy, conducting
monetary policy by announcing the interest rates path defined by Proposition 4 together with the dynamics

of the economy (15)-(16) does not define a unique equilibrium. To avoid equilibrium indeterminacy, the

20Since a one-percentage point increase in inflation at t increases long-term expectations of inflation by 1 — p percentage
points, v[* enters with the coefficient 1 — p in equation (36).

21Equation (39) does not appear explicitly in Molnar and Santoro (2014) but can be easily derived from their equations (10)
to (16). See also equation (41) in Eusepi and Preston (2018) (written for w = k/6) and equation (24) in Gaspar, Smets, and
Vestin (2010) (written for 8 = 1).
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optimal allocation needs to be implemented through a feedback rule, as it does under rational expectations
p=1

But when foresight p is lower than p* and passive monetary policy manifests itself as hyperinflation
spirals, the issue of equilibrium indeterminacy no longer arises. Announcing the interest rate path defined
by Proposition 4 and equations (15)-(16) defines a unique equilibrium. The risk of losing control over inflation
expectations still very much exist in the form of hyperinflation spirals. But the optimal policy has already
selected an interest rate path that increase rates sufficiently to prevent such spirals. The optimal policy

problem captures all that is relevant to determining the best way to anchor expectations.

Corollary 2. When p < p*, the optimal policy is self-implementing: Setting the interest rate path defined

by Proposition 4 and the dynamics of the economy (15)-(16) determines a unique equilibrium.

4.3 How Fast to Hike?

With this characterization of optimal monetary policy in hands, we return to the question of how fast to
hike in response to a supply shock. As Section 3 showed, the relative anchoring effect of policy rates soon
decreases with the horizon of the policy rate. Does it imply that the central bank only faces a trade-off
between creating a recession today, and creating a worse recession tomorrow? If so, the former may be
preferable regardless of a policy-maker’s preferences over inflation and output.

Figure 5 plots the response of the economy to a cost-push shock under the optimal policy for various
weights w on output stabilization.?? The cost-push shock is assumed to follow an AR(1) shock with persis-
tence p, = 0.5. The figures gives the IRF for three different values of the weight w on output stabilization.
As is apparent from the figure, the paths for inflation, output and the policy rate vary considerably with
the output weight. When it cares more about output, the central bank increases policy rates much less on
impact. As a result, the size of the fall in output is considerably less on impact. To prevent a hyperinflation
spiral, the smaller increase in rates early on must be compensated by higher rates later on, in order to bring
long-term inflation expectations down. Yet to bring down long-term expectations the central bank does not
engineer a recession tomorrow. Instead it keeps the policy rate where it has lifted it for a long time. This
leaves output persistently below its steady-state but avoids an outright recession. The persistent tightening
does bring long-term expectations back to steady-state in the long run, but it does so slowly.

How does the optimal path for the policy rate compare to the one under rational expectations? The effect
of a higher output weight on the optimal way to adjust interest rates is actually qualitatively the same under
rational expectations. Figure 6 plots the optimal response to the same cost-push shock ¥ in the rational
expectations economy, for the same weights on output stabilization.

There are however reasons to be suspicious of this result when it is derived under rational expectations.

First, optimal policy under rational expectations heavily relies on the strong forward-lookingness of rational

22We consider the optimal policy under a timeless perspective, i.e. respecting the commitment to past promises (38) already
in the first period (see Woodford 2003, chapter 7). Since we assume that the steady-state level of output is efficient and since
we start the IRF in Figure 6 from steady-state, this does matter however.
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expectations. In particular, very forward-looking expectations allow the central bank to deliver higher real
interest rates not through higher nominal rates but through below-target inflation in the future. Indeed,
under rational expectations, the optimal policy (38) is a form of NGDP targeting, which seeks to compensate
the inflation on impact with subsequent below-target inflation. This can be seen on Figure 6, where for
weights w = 0.1,0.5 the nominal policy rate quickly falls below its steady-state value. The increase in real
rates is achieved instead through below-target inflation instead, without above steady-state nominal rates.

Second, rational expectations assume away the risk of hyperinflation spirals. As section 3 showed, when
hyperinflation spirals can occur, delaying hikes beyond the first few quarters requires to hike more tomorrow,
for a higher cost on output. This suggests that hiking early on can limit both the costs on output and inflation
and is to be preferred regardless of one’s preferences over output and inflation stabilization.

The FPH-learning economy addresses both concerns over rational expectations: It makes expectations
less foward-looking and hyperinflation spirals possible. Departing from rational expectations does have
important consequences for the optimal path of policy rates. For a given weight on output, the central bank
increases rates more promptly in the FPH-learning model than under rational expectations. As emphasized
in Molnar and Santoro (2014), Eusepi and Preston (2018), Gaspar, Smets, and Vestin (2010), the threat of
a de-anchoring of inflation expectations forces the central bank to react more aggressively to a cost-push
shock than it does under rational expectations—keeping in mind that the rational expectations benchmark
is one in which the increase in rates is extremely gradual for substantial weights on output stabilization.

However, in FPH-learning economy a higher weight on output stabilization still justifies a slower increase
in policy rates, as it does under rational expectations. A large weight on output is of course to be judged
excessive by policy-makers with a higher weight on inflation—doves are doves. But the recommendation to
increase rates strongly and quickly in the face of a large supply shock does not follow mechanically from
the possibility of hyperinflation spirals. A relatively lower weight on output stabilization is required for the

strong and quick hike to be preferred to a smaller but more persistent one.

5 Conclusion

To stabilize inflation expectations in the face of large supply shocks, a central bank must tighten monetary
policy enough. At this broad level the intuition is consistent with the result in rational expectations models
that the Taylor principle rules out self-fulfilling inflation. In this paper we have argued that this leaves
out important elements of this intuition however. Studying how to stabilize inflation expectations in a
bounded-rationality model that captures both forward and backward-looking elements of expectations allows
to capture these elements. It captures the risks of passive monetary policy in the form of both self-fulfilling
inflation and hyper-inflationary spirals. It allows to identify at what horizons interest rate hikes matter
most for anchoring expectations. And it allows to derive policy recommendations directly from the study of

optimal policy, since when firms and households’ foresight is low enough, a Taylor-type feedback rule is no
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longer necessary to implement the optimal monetary policy. The optimal monetary policy highlights that
while not increasing policy rates today necessarily imposes to increase them later, it does not follow that
increasing rates slowly only sets the stage for a worse recession tomorrow. Increasing rates slowly to avoid
a recession today can be justified by a large weight on output stabilization, provided policy rates are then

kept high for longer.
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Figure 5: Optimal Response to a Cost-push Shocks in the FPH-Learning Model

Note: The figures gives the impulse response to a cost-push shock in FPH-learning economy (15)-(16), when monetary
policy is set to minimize the loss function (33) under commitment. The persistence of the cost-push shock is pp = 0.5.
The IRF is given for three different values of the weight w on the output gap in the loss function. The calibration of
the other parameters is given in Table 2. The real interest rate that is plotted is the rationally expected ex-ante real

rate r¢ =1 — Eymeq1.
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Figure 6: Optimal Response to a Cost-push Shocks under Rational Expectations

Note: The figures gives the impulse response to a cost-push shock in the rational expectations economy (4), when
monetary policy is set to minimize the loss function (33) under commitment. The persistence of the cost-push shock
is pp = 0.5. The IRF is given for three different values of the weight w on the output gap in the loss function. The

calibration of the other parameters is given in Table 2.
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A Matrix Expressions

Injecting the Taylor rule into the Euler equation, the New Keynesian model under rational expectations can

be written in 2-by-2 matrix form as

B)/t = CEt(YVtJ,_l) + avy, (Al)

where Y; = (y¢, m)', v = (v, vF — ky§), and B, C, a are

1+o0¢, oo¢x

B = , (A.2)

—K 1

1 o

C = , (A.3)
0 g
1 0

a= (A4)
01

It can be rewritten as equation (4) with A = B~'C and b = B~ lq, i.e.

) L o(l-B)
A= 500, b | o
k ok+p(1+0¢y)
1 1 70’¢7r
R R o
Kk 1+o0d,
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For further reference, the inverse of matrix A is:

l+ogy+% o¢r—3
Al = . (A7)

™!
|

In sections 3 and 4, we use the matrix b}, = By ' (c,0)’ which is equal to:

oK

B Rewriting of the FPH-Learning Model

Throughout this appendix we refer to the equation numbers in Woodford’s paper, rewriting them with our
notations whenever they slightly differ from Woodford (2019). Woodford (2019) shows that a household
with planning horizon h links its expectations at ¢ of output from ¢ to ¢ + h through the standard recursion

(equation (2.15))
§=0,.hoyls) = =0l — Ed(nt ) + Byl i) + v, (B.1)
and at t + h to its long-term value function v;—; through (equation (4.12))
y?Jrh = _Ui?Jrh + U1+ Vty+h, (B.2)

where the superscript h — j takes note of the number of periods until the end of the planning horizon of the

agent. The long-term value function v; satisfies (equation (4.6))
ve = poe—1 + (1= p)vg™ (B.3)

and (equation (4.3))

est

vfst =y +om (B.4)

Combining equations (B.2), (B.3) and (B.4) gives
Yirn = —0lgn + (Y5 +omity) + v (B.5)
On the firm’s side, Woodford shows that a firm with planning horizon h that gets to reset its price at ¢
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sets it to
h

pr* = Ep | Y (@B) (repy + (1= aB)ymeyy) + (aB) 1o

Jj=0

(B.6)

where @;_1 is the firm long-term value function, m denotes marginal cost, and E! denotes firm h’s subjective

beliefs. The long-term value function 7, satisfies (equation (4.9))

By = pbp—1 + (1 — p) 05"

and (equation (4.11))

h
,Eest — Tt
¢ 1—-«

Knowing that 7/ = (1 — a)pl*, and m; = ((y; — v¢), this can be rewritten

h

= Eh Z(l —a)(aB) (mipy + (1 — aB)C(yrs — Y5y ;) + (aB)

Jj=0

It can be written recursively as

. h—j h—j—1
] = 0, ceey h — ]., 7Tt+J1] = K/(ytJrj — y§+]) + ﬂEt(ﬂ—t-i-j]-i-l

0 h
Tith = K(Yern — yte+h) + Bty

where k = w&ﬂ( is the slope of the NKPC.

Equations (B.1) and (B.10) write in matrix form
. h—j h—j—i
J=0,..h = 1LY = AV, + bu,
while equations (B.5) and (B.11) write in matrix form

Y0 = AV + by

Tterating forward gives equation (10) in the text.

),

h+1__hx*
T

(B.8)

(B.10)
(B.11)

(B.12)

(B.13)

Aggregating across horizons h for the geometric distribution of planning horizons where the fraction of

households and firms with planning horizon h is (1 — p)p" gives equation (11) in the text.

C Derivation of the Taylor Principle under FPH only

The FPH-only economy (6) has a unique bounded equilibrium if and only if both eigenvalues of the matrix

(pA)~! are outside the unit circle. These two eigenvalues are the eigenvalues \j(¢) and \j3(¢) of the matrix
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A~'—i.e. of the model under rational expectations—but scaled up by a factor 1/p

V() =22, (1)

The two eigenvalues \;(¢) and \5(¢) of A~! are the solutions of the quadratic equation
P\) =X\ —tr(A YA+ det(A™H). (C.2)

where from the expression (A.7) of A~!

det(A~1) = %(1 oy + ors) > 0, (©.3)
1
tr(A™) = B+%+1+o¢y > 0. (C.4)

One of the two roots—A\] without loss of generality—is always outside the unit circle. Indeed, if the roots
are real, then det(A) > 0, tr(A) > 0 implies that both roots are positive, and since det(A4) > 1 one of them
is necessarily greater than one, i.e. outside the unit circle. If the roots are complex, then their common
modulus is y/det(A) > 1 so they are both outside the unit circle.

As a result, )\{ (¢) is always outside the unit circle and the condition (C.1) is equivalent to the smaller
root, )\g(@ being outside the unit circle. Therefore, there exists a unique bounded solution if and only if
A5 (o) is greater than p, which is condition (17) in the text.

Under rational expectations p = 1, condition (17) is that A} is outside the unit circle. If the roots are
real, this is equivalent to P(1)>0, which is equivalent to the Taylor principle (18). In the case of two complex
roots, in which case both roots are outside the unit circle, P(1)>0 so the Taylor principle is also satisfied.

Consider now the case ¢ = ¢, = 0. Denote Ay the matrix A when ¢ = ¢, = 0. The roots of the

matrix Ay ' are then both real, and the smaller root is

tr(AgY) — \/(tr(451)? — Adet(4;™)

X(0) = .

(C.5)

The condition )\5(0) = %)\3(0) > 1 is equivalent to p < p* = A5(0), which is the expression (19) once

replacing the expressions for the trace (C.4) and determinant (C.3).
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D Proofs of Lemma 1

The system (11) can be written backward and in matrix form as

E(Y}) (pA)~! 0 v/ (pA)~'b
v (a-m=piya=pa) (ur+a-pa-n-pna) | | ve, 0
(D.1)

This is a triangular system, whose 4 roots are therefore the eigenvalues of the 2-by-2 matrices (pA)~! and
(ul + (1 — p)(I — pA)~1(1 — p)A). We already encountered the eigenvalues of (pA)~!, which we denoted
)\‘if, i =1,2, and whose expression as function of the eigenvalues A} of A~! is given in (C.1). We denote )\5?7
i = 1,2 the eigenvalues of the matrix (ul + (1 — u)(I — pA)~1(1 — p)A).

Diagonalize A as:

A=QAQ 7Y, (D.2)

where A = diag(1/A}). We have that:
(1= pA) A = QT - pM)Q 1) 1QAQ ™! (D.3)
QU - pA)1AQ (D.4)
= Qdiag ( 1 ) QL. (D.5)

Al —p
So that:

(W + (1~ (1 = p)(T — pA)~*A4) = Qdliag (u (-1 -p) ( Xf_p)) Q. (Do)

So (uI + (1 —p)(1—p)(I —pA)~LA) is diagonalizable in the same basis as A and its eigenvalues are the ones
given in (21).

E Proof of Proposition 1

We first show the following lemma.
Lemma 2. For a givent = 1,2,
o If X (@) is outside the unit circle, then )\Zf and \b(¢) are on opposite sides of the unit circle: )\Zf((b)

outside and \b(¢) inside.
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o If X () is inside the unit circle—in which case it is necessarily real—distinguish two cases. If

pe [u@ g0+ x0). (5.1)
ue{Q&YQE%;M] (E.2)

then M (¢) and Ab(¢) are on opposite sides of the unit circle: M (¢) inside and No(¢) outside. Both
)\{((JS) and \2(¢) are then real and \2() is negative.

If condition (E.1)-(E.2) is not satisfied, then A (¢) and \!(¢) are on the same side of the unit circle.

1. If p > Xi(®), then both N (¢) and No(¢) are inside the unit circle.

2. If p < Xi(¢), then both )\{(Qﬁ) and \b(¢) are outside the unit circle.

Proof. Assume first that A() is outside the unit circle, [Af(¢)| > 1. Then A (¢) = 1/pA*(¢) is outside the

unit circle. Besides, since from equation (21)

(1=p)(1—p)
X (¢) —p = YOErE (E.3)

and

(A (@) = p[= [N (@) =p = 1 = p, (E4)

we have that
(1-p)(1—p)
IA;(0) = pl

Assume now that Af(¢) is inside the unit circle |Af(¢)| < 1. Because when the A (¢) are complex they

X (@) < N (@) — ul + 1 < tu<l

have modulus \/det(A~1) > 1/4/B and are therefore necessarily outside the unit circle, A\j(¢) inside the unit
circle is necessarily real. Furthermore, if the A\}(¢) are real, since det(A~1) > 0 and tr(A~1) > 0 they are

necessarily positive, so 0 < Af(¢) < 1. Equation (21) implies that

sign(A)(¢) — 1) = —sign(A; (¢) — 1) x sign(A/ (¢) — 1), (E.5)

SO )\{'(qﬁ) and \2(¢) are on the same side of 1. It remains possible for them to be on opposite signs of the
unit circle however, if \?(¢) < —1 so that )\{(qﬁ) is inside the unit circle and A\?(¢) outside it. This is the
case if and only if condition (E.1)-(E.2) is satisfied.

If condition (E.1)-(E.2) is not satisfied, then A/ (¢) and A?(¢) are on the same side of the unit circle, and
the side of the unit circle they are on is the side of 1 they are on. If p > A¥(¢), then both )\{(qﬁ) and \b(¢)
are inside the unit circle. If p < A¥(¢), then both /\gc (¢) and A2(¢) are outside the unit circle. O

We now use this lemma to show Proposition 1. We know that one of the two roots Aj(¢) is necessarily

outside the unit circle, and only the other root A3(¢) may be inside or outside the unit circle. From the

34



lemma, it follows that )\{ (¢) = M\i(¢)p is always outside the unit circle and \?(¢) is always inside the unit
circle. We now distinguish cases for the roots A} (¢) and A}(¢).

Assume first that the Taylor principle (18) is satisfied, i.e. A5(¢) is also outside the unit circle. From the
lemma, it follows that )\g (¢) is outside the unit circle and A}(¢) is inside the unit circle. The system has 2
roots outside the unit circle and two roots inside, so the system has a unique bounded solution.

Assume now that the Taylor principle is not satisfied, i.e. \5(¢) is inside the unit circle. Consider first
the case where condition (22)-(23) is not satisfied. Then from the lemma, )\g((b) and \5(¢) are necessarily
on the same side of the unit circle, so the system has either 3 roots outside the unit circle and one inside, or
3 roots inside the unit circle and one outside. Either way it has no unique bounded solution. If p > A3(¢),
then both )\{ (¢) and A\b(¢) are inside the unit circle, so the system has 3 roots inside the unit circle and the
system is indeterminate. If p < A¥(¢), then both )\Zf (¢) and A\2(¢) are outside the unit circle, so the system
has no bounded solution.

Consider now the case where condition (22)-(23) is satisfied. The system has then 2 roots outside the

unit circle and 2 roots inside, so the system has a unique bounded solution.

F Proof of Proposition 2

Define
th — Cg—l}/ﬁf7 (Fl)
Z = Q. (F:2)
The system (24)-(25) in Y; implies for Z;:
7! = diag L Ey( t+1) + cvp — cliy, (F.3)
A 0)
7! = diag (/\b ) |+ diag (Ab(()) - u) z!. (F.4)

where ¢ = Q71bg and ¢! = Q).
Denote z{,t and 2} ; the first components of Z! and Zb. They satisfy

1 )
f f i
A= o Bi(A ) +one — e, (F.5)
A (0)
2= 230)28 ,_y + (A(0) — p)z] . (F.6)

where v; = cv; and vy is the first component of v;. Denote z{t and zSyt the second components of th and
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1 )
f f i
2y = ——Ei(25 441) + V2,0 — Chiy, (F.7)
A (0)
2, = M5(0)25 1 + (M5(0) — m)zd ., (F.8)

where vy ¢ is the second component of v;.

We first show that the FPH-learning economy (24)-(25) goes back to steady-state at infinite horizon if
and only if Fy(z5,,,,) to converge to 0. If the FPH-learning economy (24)-(25) is such that (Ethin7 EYE,)
tends to 0 as n tends to infinity, then necessarily so does Et(zgt 4n)- Conversely, we show that a failure of
Ey(25 ,,,) to converge to 0 is the only thing that can prevent (Ethﬁ_n, E,Y} ) from converging to zero, as
Et(z{,t+n), Ey(2%,,,) and Et(fo’tJrn) necessarily converge to 0.

From equation (F.5), a solution to (24)-(25) that converges to 0 as ¢ tends to infinity is necessarily such

that:

Z{,t =E ;} <>\{(())> (U1,t4n — Clitin), (F.9)

which is well defined since AJ (0) > 1. Tt further implies that Et(z{’t +n) tends to 0 as n tends to infinity. In
addition, equation (F.6) implies that Ey(2},,,,) tends to 0 as n tends to infinity, because A(0) < 1.
Just like for z{vt, from equation (F.5), a solution to (24)-(25) that converges to 0 as ¢ tends to infinity is

necessarily such that:

oo n
1 i
ng,f, = E; Z <> (V2,640 — Cyittn), (F.10)

which is well defined since AJ (0) > 1.
We now derive the expression (26) for Ey(z3,,,). Iterating equation (F.8) backward gives, injecting

(F.10)

k ) n=j
w 1 i -
Ei(z2,41) = (/\S(O) D) Z )\S(O)k ’ Z <>\f(0)> Ey(vtn — Chiryn) + /\g(o)kﬂzg,t—r (F.11)
n=j 2

j=0

for all k > 0. Permuting the double summation (distinguishing the cases n < k and n > k) this can be

rewritten as equation (26).
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G Proof of Proposition 3
The proposition is a corollary of Proposition 3. For k > n, equation (26) implies that

OFE(z2,4+k)
az‘if+n

= —c3(A3(0) — p)gn(n). (G.1)

It follows that v(n) = ¢r(n)/ér(0).

H Proof of Proposition 4

The policy rate i; shows up only in the first row of the forward-looking component of the economy (15) so
we can drop i; and the first row of (15) from the optimization program. (It will give i; residually.) The
second row of (15) writes

ryl — il + ﬁpEﬂthH +vf =0. (H.1)

For a more economically meaningful interpretation of the Lagrange multipliers, we use the representation
of the system in (Y;',Y;* ) instead of (Y, Y ,). The variables Y is simply the linear transformation of
Y;fb—l = MoY/,. (H.2)

where My = (I — pA)~!(1— p)A. The backward-looking component of the economy (16) is then replaced by
the following recursion on Y;*:

i = DoYyy + (1— )Y, (H.3)

where Do = ul + (1 — p)Mo.

The program of the central bank can therefore be written as

: - 1 * e * e
Jnin By 3 S () + MY,y = VoY Q0 + MoYyr, = Y), (H.4)
t ot t=0
st (5, —1)Y + B0, p) BV, + (0, 1)y, =0, (H.5)
st Y = DoVl + (1= )Y, (H.6)

where = [w,0;0,1].
Denote by 4; the univariate Lagrange multiplier associated to the forward constraint (H.1). Denote

vi = (v/*,7F*)" the 2-dimensional multiplier associated to constraint (H.3). The first-order conditions of
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the central bank’s optimality program are

5 0

QY - YY) + Yt + Fe—1+ (1 —p)yf =0, (H.7)
1 p

v = BE; <M(I)Q(Yt+1 - Yfﬂ)) + BE: <D67:+1>' (H.8)

Iterating (H.8) forward gives equation (37) in the text. The first 2-dimensional equations (H.7) can be

rewritten to eliminate #; as

1 .
G+ ;( = p¢l 1) =0, (H.9)
where
(F=m+(1—pny, (H.10)
¢ =wlye—yf) + (1= pt . (H.11)

I Target Criterion in the Purely Backward-Looking Case p =0

This appendix shows that in the case of purely backward-looking expectations p = 0, the target criterion
(34) can be written as (39), like in the model of Molndr and Santoro (2014). To show this, we rewrite the
optimization program of the central bank this time in the variables (Y, Y;*). We denote by A\; and ~; the

associated Lagrange multipliers. We get the following relations

K
QY - YY) + A+ (1 =p)y =0
-1
K
BM; Aiy1 = + Buri, =0
-1
Thus, we obtain
oo K
V= Z(BM)ICBM(I) Attkt1
k=0
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Noticing that

We finally obtain

W =0,

KA\t +wzy =0

and

w *
i+ —a+ (L= =0

T, % > w
wr=—p Z(ﬂ/«t)k;xwkﬂ
k=0

Combining the two equations gives the target criterion (39).
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